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Abstract—We introduce a stochastic extension of CCS endowed
with a structural operational semantics expressed in terms of
measure theory. The set of processes is organised as a measurable
space by the σ-algebra generated by structural congruence
classes. The structural operational semantics associates to each
process an indexed class of measures over the space of processes.
These measures encode the rates of the transitions from a process
(state of a system) to a measurable set of processes (set of
states). We prove that stochastic bisimulation is a congruence that
extends structural congruence. The advantage of our calculus is
that, in addition to an elegant operational semantics, it provides a
natural way to define a class of metrics on processes that measure
how similar two processes are in terms of behaviour. We show
that these metrics characterize the stochastic bisimulation: two
processes are bisimilar iff they are at distance zero; two processes
are close when their stochastic behaviours are very similar.

I. INTRODUCTION

Process algebras (PAs) [3] are formalisms designed for de-
scribing the evolution of concurrent communicating systems.
For capturing observable behaviors, PAs are conceptualised
along two orthogonal axes. From an algebraic point of view,
they are endowed with construction principles in the form
of algebraic operations that allow composing larger processes
from more basic ones; a process is identified by its algebraic
term. On the other hand, there exists a notion of nondeter-
ministic evolution, described by a coalgebraic structure, in the
form of a transition system. The algebraic and coalgebraic
structures are not independent: Structural Operational Seman-
tics (SOS) defines the behavior of a process inductively on its
syntactic structure. In this way, classic PAs are supported by
an easy and appealing underlying theory that guarantees their
success.

In the past decades probabilistic and stochastic behaviors
have also become of central interest due to the applications in
performance evaluation and computational systems biology.
Stochastic process algebras such as TIPP [16], PEPA [18],
[19], EMPA [4] and stochastic π-calculus [29] have been
defined as extensions of classic PAs, by considering more
complex coalgebraic structures. The label of a stochastic
transition contains, in addition to the name of the action,
the rate of an exponentially distributed random variable that
characterizes the duration of the transition. Consequently, SOS
associates a non-negative rate value to each tuple 〈state,
action, state〉. This additional information imposes important
modification in the structure of the SOS format, such as the
multi-transition system approach of PEPA or the proved SOS

approach of stochastic π-calculus, mainly due to the fact that
nondeterminism is replaced by the race policy.

With the intention of developing a stochastic process cal-
culus for applications in computational systems biology, in
this paper we propose a stochastic version of CCS [26] based
on the mass action law [6] and equipped with an operational
semantics that is particularly suited to a domain where an
equational theory and a measure of similarity of behaviours is
important. In the same time we aim to avoid the complicated
labeling and counting of previous approaches and to provide
an operational semantics that resembles the ones for non-
deterministic process algebras, by lifting process-results to
measure-results. For doing this, our SOS rules are not given in
the pointwise style, but using constructions based on measure
theory. We organise the set of processes as a measurable space
and associate to each process a set of measures on it, indexed
by actions. Thus, for an action a, a process P and a measurable
set S of processes, the measure µa associated to a process
P specifies the rate µa(S) ∈ R+ of a-transitions from P
to (elements of) S. In this way, difficult instance-counting
problems that otherwise require complicated versions of SOS
can be solved by exploiting the properties of measures (e.g.
additivity). Similar ideas have been proposed for probabilistic
automata [24], [31] and Markov processes [21], [7], [28].
Following the transition-systems-as-coalgebras paradigm [10],
[30], this approach follows naturally in the sequence started
by nondeterministic and probabilistic transition systems.

The novelty of our approach derives firstly from the struc-
ture of the measurable space of stochastic processes that we
consider. The space of processes is organised by structural
congruence, an equivalence that equates terms representing
processes that we do not want to differentiate from a modeling
perspective. For instance, if we model the parallel evolution
of two processes, say Q and R, we expect no difference
between Q|R, R|Q and R|Q|0 (where 0 denotes an inactive
process). This relation is required in the application domain
mentioned above, where it models chemical mixing: structural
congruence was invented in the first place from a chemical
analogy [2]. In effect, our σ-algebra of processes is gener-
ated by the structural congruence classes meaning that the
sets closed under structural congruence are the measurable
sets. Our stochastic transitions are defined from processes to
measurable sets of processes. In this way, if a process P can
perform an action a with a rate r to Q|R, written P

a,r−→ Q|R,



we can also derive P
a,r−→ R|Q and P

a,r−→ R|(Q|0).
Otherwise, the alternative approach of considering any set
of processes measurable permits to calculate the rate of the
a-transitions from P to the set {Q|R,R|Q,R|(Q|0)} and
obtain the undesired result P

a,3r−→ {Q|R,R|Q,R|(Q|0)}; to
avoid such problems, in the literature have been proposed
complicated variants of SOS that make the underlying theory
heavy and problematic.

Our choice of developing a stochastic process algebra under
the restrictions of the equational theory induced by structural
congruence is sustained by an elegant SOS that supports a
smooth development of the basic theory and the definition
of metrics for stochastic behaviour. The structures we obtain,
simply called Markov processes (MPs), are particular cases
of continuous Markov processes defined in [14]; they extend
the notions of labelled Markov process [5], [13], [12] and
Harsanyi type space [17], [20], [27] on to the stochastic level.
However, MPs are not continuous-time Markov chains because
each transition is from a state to an infinite class of states
(closed to the equational theory) and consequently cannot be
described in a pointwise style.

We also introduce a notion of stochastic bisimulation for
MPs, along the lines of [25], [13], [12], [14]. The stochastic
bisimulation generalizes rate aware bisimulation introduced in
[9], being defined for arbitrary measurable spaces and closed
with respect to an equational theory (defined, in our case, by
structural congruence). We prove that, for our process algebra,
stochastic bisimulation is a congruence that extends structural
congruence.

An other advantage of our approach consists in the fact that
it can be naturally extended to define a class of metrics on
stochastic processes which measure the similarity of process
behaviours. This result has considerable practical applica-
tion. The standard notion of bisimulation for probabilistic or
stochastic systems cannot distinguish between two processes
that are substantially different and two processes that differ
by only a small amount in a real valued parameter. It is often
more useful to say how similar two processes are than to say
whether they are exactly the same. This is precisely what our
metrics do: stochastic bisimilar processes are at distance zero,
processes that differ by small values of rates are closer than
the processes with bigger differences in the rate values.

The paper is organised as follows. A preliminary section
establishes the basic concepts and notations. Section III defines
the general concept of Markov process (MP) and the stochastic
bisimulation of MPs. Section IV introduces the syntax of the
minimal process algebra and the axiomatization of structural
congruence; in this section we prove that the space of pro-
cesses can be organised as a Markov kernel meaning that each
process is an MP. The observation that the processes of our
calculus are MPs guides us, in Section V, to the definition of
a structural operational semantics which induces a notion of
behavioural equivalence that coincides with the bisimulation of
MPs. In Section VI we show that the bisimulation behaves well
with respect to the algebraic structure of processes: stochastic

bisimulation is a congruence. This relation is extended in
Section VII with a class of metrics on the space of processes
that measure how similar two processes are; two processes are
at distance zero iff they are bisimilar. We also have a section
dedicated to related work and a concluding section. The proofs
of some of the results are collected in Appendix.

II. PRELIMINARIES

In this section we recall a few notions of measure theory to
establish the terminology and the notations used in the paper.

For arbitrary sets A and B, 2A denotes the powerset of A,
A]B their disjoint union and both [A→ B] and BA will be
used to denote the class of functions from A to B. If f ∈ BA
we denote by f−1 : 2B → 2A the inverse mapping of f . For
an arbitrary function f : A→ B, the kernel of f is the relation
ker(f) = {(x, y) ∈ A×A | f(y) = f(x)}.

As usual N,Q and R denote the naturals, rationals and reals,
respectively.

Given a set M , a σ-algebra Σ over M is a set of subsets of
M containing M and closed under complement and countable
union. The tuple (M,Σ) is called a measurable space, the
elements of Σ measurable sets and M the support-set.

A set Ω ⊆ 2M is a generator for the σ-algebra Σ on M if
Σ is the closure of Ω under complement and countable union;
we write Ω = Σ and say that Σ is generated by Ω. A generator
Ω for Σ is a base of Σ if it has disjoint elements.

A measure on a measurable space M = (M,Σ) is a
function µ : Σ → R+ such that µ(∅) = 0 and for any
{Ni|i ∈ I ⊆ N} ⊆ Σ with pairwise disjoint elements,
µ(
⋃
i∈I Ni) =

∑
i∈I µ(Ni). The null measure on (M,Σ) is

the measure ω such that ω(M) = 0.
If Ω is a base for (M,Σ), N ∈ Ω and r ∈ R+, then the

function f : Ω→ R+

f(N ′) =
{
r if N ′ = N
0 if N ′ 6= N

can be extended, by f(∪i∈INi) =
∑
i∈I f(Ni), to a measure

on (M,Σ) denoted by D(r,N) and called the r-Dirac measure
on N .

Let ∆(M,Σ) be the class of measures on (M,Σ). We
organize it as a measurable space by considering the σ-algebra
generated, for arbitrary S ∈ Σ and r > 0, by the sets
{µ ∈ ∆(M,Σ) : µ(S) ≥ r}.

Given two measurable spaces (M,Σ) and (N,Θ), a map-
ping f : M → N is measurable if for any T ∈ Θ, f−1(T ) ∈
Σ. We use JM → NK to denote the class of measurable
mappings from (M,Σ) to (N,Θ).

Given a set X , a pseudometric on X is a function d : X ×
X → R+ such that
1. ∀x ∈ X , d(x, x) = 0;
2. ∀x, y ∈ X , d(x, y) = d(y, x);
3. ∀x, y, z ∈ X , d(x, y) ≤ d(x, z) + d(y, z).
It is a metric on X if, in addition, satisfies
4. ∀x, y ∈ X , if d(x, y) = 0, then x = y.
If d is a metric, then (X, d) is a metric space.



Observe that given a pseudometric on X , one can define an
equivalence on X by pairing the elements at distance zero.

The notion of an analytic space is central to the definition
of Markov kernel and Markov process presented in the next
section and is, in fact, a necessity for technical reasons.
We have chosen this level of generality because our process
calculus requires a more general concept than continuous-
time Markov chain. For this, we propose a general definition
that encapsulates most of the known concepts of Markovian
systems and will allow, in future, the extension of this work
toward a general algebra of Markovian processes. However,
these technicalities do not influence the general presentation
and for this reason we only sketch the main definitions. For a
detailed discussion the reader is referred to [28] (Section 7.5)
or to [15] (Section 4.4).

A metric space (X, d) is complete if every Cauchy sequence
converges in X .

A Polish space is the topological space underlying a com-
plete metric space with a countable dense subset. Note that
any discrete space is Polish.

An analytic space is the image of a Polish space under a
continuous function from one Polish space to another. Note
that any Polish space is analytic. Because analytical spaces
are topological spaces, they are also measurable spaces if we
consider the Borel σ-algebra generated by the topology.

III. CONTINUOUS MARKOV PROCESSES

Before introducing the stochastic process algebra, we define
a general notion of Markov process (MP) that encapsulates
various notions of Markovian stochastic systems such as
(discrete space) Markov chain with discrete or continuous time
[21], labelled Markov process [28] as well as the most general
case of continuous-space and continuous-time Markov process
introduced in [14]. The notion of MP relies on the observation
that a Markovian process is essentially a coalgebraic structure
that encodes stochastic behaviors and can be seen, following
the transition-systems-as-coalgebras paradigm [30], [10], as a
generalisation of the notion of transition system: a transition
system associates to each state of a system an action-indexed
set of functions over the state space; functions with boolean
values define labelled transition systems while probabilistic
distributions define labelled Markov processes [5], [13], [12],
[28] and Harsanyi type spaces [17], [27]. This paradigm is
particularly appropriate when one is interested in systems with
complex state space where transitions cannot be represented
from one state to another, but from a state to a measurable set
of states or to a (topological) neighbourhood.

An MP involves a set A of labels. The labels α ∈ A
represent types of interactions with the environment. If m is
the current state of the system and N is a measurable set of
states, the function θ(α)(m) is a measure on the state space
and θ(α)(m)(N) ∈ R+ represents the rate of an exponentially
distributed random variable that characterizes the duration of
an α-transition from m to arbitrary n ∈ N . Indeterminacy in

such systems is resolved by races between events executing at
different rates.

Definition 3.1 (Markov kernels and Markov processes):
Let (M,Σ) be an analytic space, where Σ is the Borel algebra
generated by the topology, and A a denumerable set of labels.
An A-Markov kernel is a tuple M = (M,Σ, θ), with

θ : A→ JM → ∆(M,Σ)K.

If m ∈M then the tuple (M,Σ, θ,m) is an A-Markov process
of M and m is its initial state.

Notice that θ(α) is defined as a measurable mapping
between (M,Σ) and the measurable space ∆(M,Σ) of the
measures on (M,Σ). This condition is equivalent to the
conditions on the two-variable rate function used in [14], [28]
to define transitions for continuous Markov processes (see, e.g.
Proposition 2.9, of [15]). If M = (M,Σ, θ), we sometime
denote the process (M,Σ, θ,m) by (M,m).

We define the stochastic bisimulation relation on MPs
following the similar definitions of [12], [14], [28].

Given a binary relation R ⊆ M ×M on a set M , we call
a subset N ⊆M R-closed iff

{m ∈M | ∃n ∈ N, (n,m) ∈ R} ⊆ N.

If (M,Σ) is a measurable space and R ⊆ M × M , Σ(R)
denotes the set of measurable R-closed subsets of M .

Definition 3.2 (Stochastic bisimulation): For an A-Markov
kernel M = (M,Σ, θ), a rate-bisimulation relation is an
equivalence relation R ⊆ M ×M such that (m,n) ∈ R iff
for any C ∈ Σ(R) and any α ∈ A,

θ(α)(m)(C) = θ(α)(n)(C).

Two MPs (M,m) and (M, n) are stochastic bisimilar,
written m ∼M n, if m and n are related by a rate-bisimulation
relation.

Observe that, for any A-MP (M,Σ, θ), there exist rate-
bisimulation relations. For instance, the identity of the ele-
ments of M is a rate-bisimulation relation.

IV. A MINIMAL STOCHASTIC PROCESS ALGEBRA

In this section we introduce a stochastic extension of
CCS without replication [26]. As usual in stochastic process
algebras, each transition a has associated a rate in R+ repre-
senting the absolute value of the parameter of an exponentially
distributed random variable that characterizes the duration of
an a-action. In addition, we also consider synchronizations of
actions. As in CCS, the set of actions is equipped with an
involution that associates to each action a its paired action a;
the paired actions have the same rates. The synchronization of
(a, a) counts as an internal τ -action with the rate satisfying
the mass action law [6].

Formally, the set of labels (actions) is a countable set A
endowed with (i) an involution, that is a function associating
to each a ∈ A an element a ∈ A such that a 6= a and a = a;
(ii) a weight function ι : A → Q+, such that for any a ∈ A,
ι(a) = ι(a). In what follows we use two extensions of A
defined for the internal action τ 6∈ A. On the syntactic level



we involve the set A∗ = A ∪ {τr | r ∈ Q+}, where indexed
internal actions will be used for modelling delays in a system
(the indexes represent the rates of the delays); we extend ι to
A∗ by ι(τr) = r. For the operational semantics we use the set
of labels A+ = A ∪ {τ}.

In what follows a, a′, ai denote arbitrary elements of A,
ε, ε′, εi denote arbitrary elements of A∗ and α, α′, αi denote
arbitrary elements of A+.

Definition 4.1 (Stochastic Processes): A-stochastic
processes are defined, on top of a constant 0 and for
arbitrary ε ∈ A∗, inductively as follows1

P := 0
... ε.P

... P |P
... P + P.

We denote by P the set of stochastic processes.
An essential notion for processes is the structural congru-

ence relation which equates processes that, in spite of their
different syntactic form, represent the same systems.

Definition 4.2 (Structural congruence): Structural congru-
ence is the smallest relation ≡⊆ P×P satisfying, for arbitrary
P,Q,R ∈ P and ε ∈ A∗ the following conditions.
I. ≡ is an equivalence relation on P
II.(P, |, 0) is a commutative monoid for ≡, i.e.,

1. P |Q ≡ Q|P ; 2. (P |Q)|R ≡ P |(Q|R); 3. P |0 ≡ P .
III. (P,+, 0) is a commutative monoid for ≡, i.e.,

1. P +Q ≡ Q+ P ; 2. (P +Q) + R ≡ P + (Q+ R);
3. P + 0 ≡ P .

IV. ≡ is a congruence with respect to the algebraic structure
of P, i.e., if P ≡ Q, then

1. P |R ≡ Q|R; 2. P +R ≡ Q+R; 3. ε.P ≡ ε.Q.
Let P≡ be the set of ≡-equivalence classes on P. For arbitrary
P ∈ P, we denote by P≡ the ≡-equivalence class of P . Note
that P≡ is a denumerable partition of P, hence it generates a
σ-algebra Π over P; thus, (P,Π) is a measurable space. The
measurable sets are (possibly denumerable) reunions of ≡-
equivalence classes on P. In what follows we use P,Pi,R,Q
to denote arbitrary measurable sets of Π.

For the economy of the paper it is useful to define the
following operations on the sets of Π. For arbitrary P,Q ∈ Π
and P ∈ P, consider

P|Q =
⋃

P∈P,Q∈Q
(P |Q)≡ and PP =

⋃
P |R∈P

R≡.

Notice that P|Q and PP are measurable sets.

In the rest of this section we show that the measurable
space (P,Π) of stochastic processes can be organised as an
A+-Markov kernel. This will implicitly provide a structural
operational semantics for the minimal stochastic process alge-
bra such that the behavioural equivalence coincides with the
bisimulation of MPs.

Notice, to begin with, that (P,Π) is a Polish, hence, analytic
space.

The next definition constructs, inductively on the structure
of processes, a function θ : A+ → JP→ ∆(P,Π)K which, we

1Notice that in practice we cannot measure nor specify models with
irrational rates and for this reason we have chosen ι(ε) ∈ Q+ for all ε ∈ A∗.

will prove, organizes (P,Π, θ) as an A+-Markov kernel. The
intuition is that for arbitrary P ∈ P, P ∈ Π and α ∈ A+,
θ(α)(P )(P) represents the total rate of the α actions from P
to (elements of) P .

Recall that ω,D(r,Q≡) ∈ ∆(P,Π) denote the null measure
and the r-Dirac measure2 on Q≡ respectively.

Definition 4.3: Let θ : A+ → [P → ∆(P,Π)] be defined,
inductively on the structure of P ∈ P, as follows.
The case P = 0: For any α ∈ A+, let θ(α)(0) = ω.
The case P = ε.Q, ε ∈ A∗: For arbitrary a ∈ A, let

θ(τ)(ε.Q) =
{
D(ι(ε), P≡), ε 6∈ A
ω, ε ∈ A

θ(a)(ε.Q) =
{
D(ι(ε), P≡), ε = a
ω, ε 6= a

The case P = Q+R. For any α ∈ A+ and P ∈ Π,

θ(α)(Q+R)(P) = θ(α)(Q)(P) + θ(α)(R)(P).

The case P = Q|R. For any a ∈ A and P ∈ Π,

θ(a)(Q|R)(P) = θ(a)(R)(PQ) + θ(a)(Q)(PR),

θ(τ)(Q|R)(P) = θ(τ)(R)(PQ) + θ(τ)(Q)(PR)+

a∈A∑
P1|P2⊆P

θ(a)(Q)(P1) · θ(a)(R)(P2)
2 · ι(a)

.

If we define the set of active actions of a process P ∈ P
by act(0) = ∅, act(a.P ) = {a}, act(P + Q) = act(P |Q) =
act(P )∪act(Q), then any process has only a finite set of active
actions. Notice that θ(a)(P ) 6= ω iff a ∈ act(P ). This means
that for any a 6∈ act(P ) and any R ∈ Π, θ(a)(P )(R) = 0.
Consequently, the infinitary sum involved in Definition 4.3 has
a finite number of non-zero summands. Notice also that the
sum is divided by 2 because we count the interaction pairs
(a, a) twice (recall that a = a) and is divided by ι(a) to
satisfy the mass action law3.

The next theorem states that the space of processes with the
function defined above is an A+-Markov kernel. Notice that,
for proving this result, we implicitly show the correctness of
the previous definition, i.e. that for each α ∈ A+ and each
P ∈ P, θ(α)(P ) ∈ ∆(P,Π), i.e. it is a measure. From here
it follows immediately that for each α ∈ A+, θ(α) ∈ JP →
∆(P,Π)K.

Theorem 4.1: (P,Π, θ) is an A+-Markov kernel.
A consequence of the previous theorem is that for each

P ∈ P, (P,Π, θ, P ) is a Markov process. In effect, we can
define a stochastic bisimulation for the elements of our process
algebra simply as stochastic bisimulation of Markov processes
in (P,Π, θ).

2Notice that {Q≡, Q ∈ P} is a base of Π, hence, for any r ∈ R+ we can
define the r-Dirac measure D(r,Q≡) on arbitrary Q≡.

3Recall that ι(a) = ι(a) and this value is involved both in θ(a)(Q)(P1)
and in θ(a)(R)(P2).



V. STRUCTURAL OPERATIONAL SEMANTICS

In this section we introduce the structural operational se-
mantics for the minimal process algebra, with the intention to
induce a behavioural equivalence on processes that coincides
with their bisimulation as MPs. In this case we do not associate
to each tuple (process, action, process) a rate, as usual in
stochastic process algebras, because a transition in our case is
not between two processes, but from a process to an infinite
measurable set of processes. However, our intention is to
maintain “the spirit” of process algebras and for this reason
we will replace the classic rules based on transitions of type
P → Q with rules based on “generalised” transitions of type
P → µ where µ : A+ → ∆(P,Π) is a function defining a
class of A+-indexed measures on (P,Π).

For simplifying the rules of the operational semantics, we
first define some operations on the functions in ∆(P,Π)A+

and analyze their mathematical structures and properties.
Recall that ω is the null measure and D(r, P≡) is the r-

Dirac measure on P≡. We say that a function µ ∈ ∆(P,Π)A+

has finite support if A \ µ−1(ω) is finite or empty.
Definition 5.1: Consider the following constants and oper-

ations on ∆(P,Π)A+
defined as follows.

1. For arbitrary α ∈ A+, let ω : A+ → ∆(P,Π) be defined
by ω(α) = ω.
2. For arbitrary ε ∈ A∗ and P ∈ P let [εP ] : A+ → ∆(P,Π)
be defined, for arbitrary a ∈ A, by

[εP ](a) =
{
D(ι(ε), P≡), a = ε
ω, a 6= ε

[εP ](τ) =
{
D(ι(ε), P≡), ε 6∈ A
ω, ε ∈ A

3. For arbitrary µ′, µ′′ ∈ ∆(P,Π)A+
, let µ′ ⊕ µ′′ : A+ →

∆(P,Π) be defined, for arbitrary α ∈ A+, by

(µ′ ⊕ µ′′)(α) = µ′(α) + µ′′(α).

4. For arbitrary µ′, µ′′ ∈ ∆(P,Π)A+
with finite support and

P,Q ∈ P, let µ′ P⊗Q µ′′ : A+ → ∆(P,Π) be defined by,

(µ′ P⊗Q µ′′)(a)(R) = µ′(a)(RQ) + µ′′(a)(RP ) for a ∈ A

(µ′ P⊗Q µ′′)(τ)(R) = µ′(τ)(RQ) + µ′′(τ)(RP )+

a∈A∑
P1|P2⊆R

µ′(a)(P1) · µ′′(a)(P2)
2 · ι(a)

.

Observe that because µ′ and µ′′ have finite support, the
sum involved in the definition of P⊗Q has a finite number
of non-zero summands.

The next lemma proves that the definitions of ⊕ and P⊗Q
for arbitrary P,Q ∈ P are correct; it also states some basic
properties of these operators.

Lemma 5.1: 1. For arbitrary µ, µ′, µ′′ ∈ ∆(P,Π)A+
,

µ⊕ µ′ ∈ ∆(P,Π)A+
and

(a). µ⊕ µ′ = µ′ ⊕ µ,

(b). (µ⊕ µ′)⊕ µ′′ = µ⊕ (µ′ ⊕ µ′′),
(c). µ = µ⊕ ω.
2. For arbitrary P,Q,R ∈ P and µ′, µ′′, µ′′′ ∈ ∆(P,Π)A+

with finite support, µ P⊗Q µ′ ∈ ∆(P,Π)A+
and

(a). µ′ P⊗Q µ′′ = µ′′ Q⊗P µ′,
(b). (µ′ P⊗Q µ′′) P |Q⊗R µ′′′ = µ′ P⊗Q|R (µ′′ Q⊗R µ′′′),
(c). µ′ P⊗0 ω = µ′.
3. For arbitrary P, P ′, Q,Q′ ∈ P, ε ∈ A+ and µ′, µ′′ ∈
∆(P,Π)A+

with finite support,
(a). if P ≡ P ′ and Q ≡ Q′, then µ′ P⊗Q µ′′ = µ′ P ′⊗Q′ µ′′,
(b). if P ≡ Q, then [εP ] = [εQ].

The rules of the structural operational semantics, given for
arbitrary P,Q ∈ P and ε ∈ A+, are listed in Table I. The
stochastic transition relation is the smallest relation →⊆ P×
∆(P,Π)A+

satisfying these rules.

(Null). 0→ ω

(Guard). ε.P → [εP ]

(Sum).
P → µ′ Q→ µ′′

P +Q→ µ′ ⊕ µ′′

(Par).
P → µ′ Q→ µ′′

P |Q→ µ′ P⊗Q µ′′

TABLE I
STRUCTURAL OPERATIONAL SEMANTICS

The operational semantics associates to each process P ∈ P
a mapping µ ∈ ∆(P,Π)A+

. For each ≡-closed set of processes
P ∈ Π and each α ∈ A+, µ(α)(P) ∈ R+ represents the total
rate of the α-reductions of P to some arbitrary element of P .
The next lemma guarantees the consistency of the relation →
and of our operational semantics.

Lemma 5.2: For any P ∈ P there exists a unique µ ∈
∆(P,Π)A+

such that P → µ; moreover, µ has finite support.
The operational semantics can be further used to define

various pointwise semantics as, for instance, by P
α,s−→

Q iff µ(α)(Q≡) = s.
Example 5.1: Suppose that a, b, c ∈ A with a, a, b, b, c, c

pairwise distinct and ι(a) = r. It is immediate that
1. a.P |a.P a,2r−→ a.P |P , 2. a.P |a.Q τr,r−→ P |Q,
3. (a.P1 + b.P2)|(a.Q1 + c.Q2)

τr,r−→ P1|Q1.
The next lemma ensures that the operational semantics does

not differentiate the structural congruent processes.
Lemma 5.3: If P ≡ Q and P → µ, then Q→ µ.
In general, we can speak of lifting the algebraic structure of

the class P of processes to the class ∆(P,Π)A+
of functions.

However, it is not an “authentic” lifting as the signature on
P is not the same as the signature of ∆(P,Π)A+

– a fact
that differentiates our approach from the other GSOS [32] or
SGSOS [22] formats. For instance, to the parallel operator “|”
there corresponds, in the domain of functions, a denumerable
class of binary operators indexed by processes, i.e. “ P⊗Q”.
This non-standard situation is a consequence of the fact that
≡(≈. If we consider the processes P = a.0|b.0 and Q =



a.b.0 + b.a.0 for a, b ∈ A and {a, a} ∩ {b, b} = ∅, then P →
(µ1 = [a0 ] a.0⊗b.0 [b0]) and Q→ (µ2 = [ab.0]⊕ [ba.0]). It is trivial
to verify that µ1 = µ2, however P 6≡ Q. This shows that for
some R→ ν, we can have µ1 P⊗R ν 6= µ1 Q⊗R ν. Hence, due
to the parallel operator and to the σ-algebra we have chosen, it
is not possible to provide an SOS that uses the same signature
for processes and for behaviours (functions) as in the classic
case. However, in Section VI, after introducing the stochastic
bisimulation relation “∼” for processes and functions, we will
see that the quotient of ∼ on both domains produces the same
algebraic signatures, meaning that we eventually have a “well-
behaved” SOS, but up to stochastic bisimulation.

It is also important to notice that our “generalised” transition
system induced by our SOS is image-finite. The importance
of this property was motivated from the perspective of GSOS.
In [32] it is observed that image-finite GSOS are in one-
to-one correspondence with the distributive laws that ensure
the cooperation between the algebraic and the coalgebraic
structures of the class of processes, and this was eventually
proved in [1]. The next lemma shows that our system has a
similar property. We write P =⇒ Q if there exists α ∈ A+

and r 6= 0 such that P
α,r−→ Q≡ and let =⇒∗ be the transitive

closure of =⇒.
Lemma 5.4: For an arbitrary process P ∈ P, the sets
{α ∈ A+ | P α,r−→ P, r 6= 0}, {Q≡ ∈ Π | P =⇒ Q} and
{Q≡ ∈ Π | P =⇒∗ Q} are finite.

Of particular importance for the metrics we will introduce
later are the second and the third sets of the previous lemma
that allow us to give inductive definitions on the generalised
transition tree.

VI. STOCHASTIC BISIMULATION IS A CONGRUENCE

This section is dedicated to the study of stochastic bisim-
ulation for the minimal stochastic process algebra. In the
pointwise approach, since the operational semantics requires
various mathematical artifacts such as the multi-transition
systems [18], [19] or the proved SOS [29], the problem of
stochastic bisimulation is difficult to trace. Recently, an elegant
solution was proposed in [22] for the case when there are no
equational restrictions on the algebraic level. As argued before,
for practical modeling purposes, our algebra is endowed with
an equational theory of structural congruence that organizes
the measurable space of processes and consequently, stochastic
bisimulation requires a different treatment.

In what follows we introduce the stochastic bisimulation for
the minimal process algebra as the stochastic bisimulation on
the Markov kernel (P,Π, θ). We show that it behaves well
both on coalgebraic and on algebraic levels: processes that
have associated the same functions by our SOS are bisimilar
and the bisimulation is a congruence that extends the structural
congruence.

Before proceeding with the technical developments we
informally recall that, in abstract algebra, given a set X with
an algebraic structure, a congruence relation on X is an
equivalence relation on X preserving its algebraic structure.

Lemma 5.2 shows that the operational semantics induces a
function ϑ : P→ ∆(P,Π)A+

defined by

ϑ(P ) = µ iff P → µ.

In this light, one can note a relation between ϑ and the function
θ that organises P as a Markov kernel. It reflects the similarity
between the Definitions 4.3 and 5.1.

Lemma 6.1: If (P,Π, θ) is the Markov kernel of processes
and ϑ : P→ ∆(P,Π)A+

is the function induced by SOS, then
for any P ∈ P, α ∈ A+ and P ∈ Π,

θ(α)(P )(P) = ϑ(P )(α)(P).

Recall that for a Markov kernel (M,Σ, θ), ∼(M,Σ,θ) denotes
the stochastic bisimulation on it. The next result is a direct
consequence of the previous lemma stating that ∼(P,Π,θ) is an
extension of the kernel of ϑ.

Corollary 6.1: For arbitrary P,Q ∈ P, if P → µ and Q→
µ, then P ∼(P,Π,θ) Q.

This result guarantees that we can safely define the stochas-
tic bisimulation for our process algebra as the stochastic
bisimulation on (P,Π, θ). This allows us to propose the next
definition.

Definition 6.1 (Stochastic bisimulation on processes): A
rate-bisimulation relation on processes is an equivalence
relation R ⊆ P × P such that for arbitrary P,Q ∈ P with
P → µ and Q → µ′, (P,Q) ∈ R iff for any C ∈ Π(R) and
any α ∈ A+,

µ(α)(C) = µ′(α)(C).

Two processes P,Q ∈ P are stochastic bisimilar, written P ∼
Q, iff there exists a rate bisimulation relation R such that
(P,Q) ∈ R.

The next theorem provides a characterization of stochastic
bisimulation.

Theorem 6.1: The stochastic bisimulation ∼ is the smallest
equivalence relation on P such that for arbitrary P,Q ∈ P with
P → µ and Q → µ′, P ∼ Q iff for any C ∈ Π(∼) and any
α ∈ A+, µ(α)(C) = µ′(α)(C).

We denote by P∼ the set of ∼-equivalence classes on P,
and for arbitrary P ∈ P we denote by P∼ the ∼-equivalence
class containing P . We use the notation P 6∼ Q to say that P
and Q are not stochastic bisimilar.

In what follows we show some examples of bisimilar pro-
cesses. The first example proves a general rule for concurrent
Markovian processes (see Section 4.1.2 of [21]).

Example 6.1: (i) If a, b ∈ A such that a 6= b, then for any
P,Q ∈ P, a.P |b.Q ∼ a.(P |b.Q) + b.(a.P |Q).
Observe that a.P |b.Q → [aP ] a.P⊗b.Q [bQ] and a.(P |b.Q) +
b.(a.P |Q)→ [aP |b.Q]⊕ [ba.P |Q]. It is simple to verify that, for
arbitrary C ∈ P∼, we have

[aP ] a.P⊗b.Q [bQ](x)(C) = [aP |b.Q]⊕ [ba.P |Q](x)(C) =
ι(a) if x = a, P |b.Q ∈ C,

0 if x = a, P |b.Q 6∈ C,
ι(b) if x = b, a.P |Q ∈ C,
0 if x = b, a.P |Q 6∈ C,
0 if x 6∈ {a, b}.



Hence, a.P |b.Q ∼ a.(P |b.Q) + b.(a.P |Q).
(ii) τr.P |τs.Q ∼ τr.(P |τs.Q) + τs.(τr.P |Q).

As before, we have τr.P |τs.Q → [τr

P ] a.P⊗b.Q [τs

Q ] and
τr.(P |τs.Q)+τs.(τr.P |Q)→ [τr

P |τs.Q
]⊕[τs

a.P |Q]. One can verify
that

[τr

P ] τr.P⊗τs.Q [τs

Q ](x)(C) = [τr

P |τs.Q
]⊕ [τs

a.P |Q](x)(C) =

r if x = τ, P |τs.Q 6∼ τr.P |Q, P |τs.Q ∈ C,
0 if x = τ, P |τs.Q 6∼ τr.P |Q, P |τs.Q 6∈ C,
s if x = τ, P |τs.Q 6∼ τr.P |Q, τr.P |Q ∈ C,
0 if x = τ, P |τs.Q 6∼ τr.P |Q, τr.P |Q 6∈ C,

r + s if x = τ, P |τs.Q ∼ τr.P |Q ∈ C,
0 if x = τ, P |τs.Q ∼ τr.P |Q 6∈ C,
0 if x 6= τ.

Example 6.2: Let b, c ∈ A be such that b 6= c. In Example
6.1 we have seen that b.0|c.0 ∼ b.c.0+c.b.0. Consider the pro-
cesses P = τr.(b.0|c.0)+τr.(b.c.0+c.b.0), Q = τr.(b.0|c.0)+
τr.(b.0|c.0) and R = τr.(b.c.0 + c.b.0) + τr.(b.c.0 + c.b.0).

If C is the ∼-equivalence class that contains b.0|c.0 and
b.c.0 + c.b.0, then
P

τ,2r−→ C, Q
τ,2r−→ C, R

τ,2r−→ C and for any other ∼-
equivalence class C ′, P

τ,0−→ C ′, Q
τ,0−→ C ′ and R

τ,0−→ C ′.
Consequently, P ∼ Q ∼ R (also because for any other action
the rate is 0 everywhere). On the other hand, if we consider
instead the pointwise semantics, then we obtain

P
τ,r−→ b.0|c.0 and P

τ,r−→ b.c.0 + c.b.0,

Q
τ,2r−→ b.0|c.0 and Q

τ,0−→ b.c.0 + c.b.0,

R
τ,0−→ b.0|c.0 and R

τ,2r−→ b.c.0 + c.b.0.

Notice that, in spite of the fact that the three processes are
bisimilar, they are not agreeing on any ”pointwise” transition.
This emphasizes the difficulties risen by the pointwise seman-
tics for the case of stochastic process algebras.

The relation ∼ on P can be lifted to ∆(P )A+
by defining,

for arbitrary µ, µ′ ∈ ∆(P)A+
, µ ∼ µ′ iff for any C ∈ P∼

and any α ∈ A+, µ(α)(C) = µ′(α)(C). Notice that ∼⊆
∆(P)A+ × ∆(P)A+

is an equivalence relation. We denote
by (∆(P)A+

)∼ the set of ∼-equivalence classes on ∆(P)A+

and for an arbitrary µ ∈ ∆(P)A+
we denote by µ∼ the ∼-

equivalence class of µ.
With this notation, from Theorem 6.1 we derive the next

corollary.
Corollary 6.2: Given P,Q ∈ P, if P → µ and Q → µ′,

then P ∼ Q iff µ ∼ µ′.
A consequence of ∼ being an equivalence on ∆(P)A+

is the
next theorem that shows that our processes behave “correctly”
with respect to structural congruence.

Theorem 6.2: Given P,Q ∈ P, if P ≡ Q, then P ∼ Q.
In addition to the result of the previous theorem, notice that

∼ is strictly larger than ≡, because for arbitrary a, b ∈ A we
have a.0|b.0 ∼ a.b.0 + b.a.0 and a.0|b.0 6≡ a.b.0 + b.a.0.

We now state the main theorem of this section.

Theorem 6.3 (Congruence): Stochastic bisimulation on P is
a congruence relation with respect to the algebraic structure
of P, i.e. for arbitrary P, P ′, Q,Q′ ∈ P and ε ∈ A∗,
1. if P ∼ P ′, then ε.P ∼ ε.P ′;
2. if P ∼ P ′ and Q ∼ Q′, then P +Q ∼ P ′ +Q′;
3. if P ∼ P ′ and Q ∼ Q′, then P |Q ∼ P ′|Q′.

Because ker(ϑ) ⊆∼ and ∼ is a congruence for processes,
we deduce that if P ∼ P ′, Q ∼ Q′, P → µ, P ′ → µ′, Q→ ν
and Q′ → ν′, then µ P⊗Qν ∼ µ′ P ′⊗Q′ ν′ and for any ε ∈ A∗,
[εP ] ∼ [εP ′ ]. This shows that by taking the quotient with ∼
both on processes and on functions, we will obtain identical
signatures for processes and for behaviors (functions) and one
could provide a SOS format in the stile of [32], [22].

VII. METRICS FOR STOCHASTIC PROCESSES

In the case of stochastic and probabilistic systems, bisim-
ulation is a strict concept: it verifies whether two processes
have identical behaviours. In applications we need more. For
instance, we want to know whether two processes that may
differ by only a small amount in real-valued parameters (rates
or probabilities) are behaving in a similar way. To solve this
problem we define some pseudometrics on the set of processes
of the minimal process algebra that will measure how much
two processes are alike in terms of behaviour. In this sense,
two processes are at distance zero iff they are bisimilar. Thus,
the pseudometrics will be quantitative extensions of the notion
of bisimulation. Similar metrics were proposed in [11], [28],
exploiting the logical characterization of discrete-time Markov
processes.

The behaviours of stochastic processes can be compared
from two main points of view: the immediate transition rates
and their future behaviour. The metrics that we propose in
this section take both aspects into account. For this reason,
our metrics dc : P × P → R+ are indexed with the
parameter c ∈ [0, 1]. d1 captures only the differences between
the transition rates of processes, giving equal importance to
the differences between the immediate transitions and the
differences that arise deeper in the evolution of the processes.
On the other hand, a metric dc with c ∈ (0, 1) gives more
weight to the rate differences that arise earlier in the evolution
of the processes; as c approaches 0, the future gets discounted
more, being completely ignored for c = 0.

The intuition behind these definitions is as follows. Suppose
that we want to measure the distance between the processes
P and Q that have the immediate transitions as represented
below, where Pi,Qi ∈ Π(∼) are bisimulation classes and the
transitions are all α-transitions for some α ∈ A+.
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For calculating the distance dc(P,Q), we first pair classes Pi
and Qj and then sum the differences between the rates of
going from P and Q to Pi and Qj , respectively, and the
weighted distance between arbitrary processes Pi ∈ Pi and



Qj ∈ Qj . We thus obtain, for the pair (Pi,Qj), the value
|ri − sj | + c · dc(Pi, Qj). There are various ways in which
one can take these pairs: dc is the infimum of the values one
can get taking all possible pairings of bisimulation classes.
However, these pairings have to be one-to-one and onto on
P∼ and for this reason we will use the possible bijections on
P∼. Another observation is that we only need to consider the
pairs (Pi,Qj), such that either P can do an α-transition to Pi
with non-zero rate, or Q can do an α-transition to Qj with
non-zero rate.

In what follows we formalize these intuitions. We introduce
two families of metrics on P, Dα for α ∈ A+ and D. The first
family contains measures that concern only α-transitions for a
fixed α, while the second takes into account all the transitions.

As before, for arbitrary P,Q ∈ P, we write P =⇒ Q if
there exists α ∈ A+ and r 6= 0 such that P

α,r−→ Q≡. Let

D(P ) =
⋃

P=⇒Q
Q∼

called the set of derivatives of P . Let B be the set of bijections
σ : P∼ → P∼. For arbitrary P,Q,R, S ∈ P and σ ∈ B we
write R[σPQ]S if R ∈ D(P ) ∪ σ−1(D(Q)) and S∼ = σ(R∼).

Definition 7.1: For arbitrary α ∈ A+ consider the family
Dα of functions dcα : P× P→ R+, c ∈ [0, 1], defined by
(i) dcα(0, 0) = 0;
(ii) for P ′, P ′′ ∈ P with P ′ → µ′ and P ′′ → µ′′,
dcα(P ′, P ′′) = inf

σ∈B σα(P ′, P ′′), where4

σα(P ′, P ′′) =
R[σP ′

P ′′ ]S∑
(R∼,S∼)

(|µ′(α)(R∼)−µ′′(α)(S∼)|+c·dcα(R,S)).

The correctness of this definition derives from Lemma 5.4
and from the fact that the transition tree of a derivative of a
process P is strictly less complex than the transition tree of P .
The same arguments guarantee that the supremum considered
before is over a set with a finite number of non-zero elements.

The parameter c ∈ [0, 1] is used to associate a weight to
each transition step. For instance if a ∈ A, then dcτ (τ1.0, τ1.0+
τ1.0) = |2 − 1| = 1 because the first is doing a τ -transition
with rate 1 and the second with rate 2, dcτ (τ1.0, τ1.0 + a.0) =
|1−1| = 0 because both are doing τ -transitions with rate 1 and
for similar reasons dcτ (τ1.0 + τ1.0, τ1.0 + a.0) = |2− 1| = 1.

τ1.0
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τ1.0 + a.0

τ,1
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a,ι(a)
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0∼ 0∼

If we prefix these three processes, we will see their differ-
ence only at the second level transitions and this will influence
the measure. Thus, dcτ (τ2.τ1.0, τ2.(τ1.0+ τ1.0)) = |2−2|+ c ·
|2−1| = c, dcτ (τ2.τ1.0, τ2.(τ1.0+a.0)) = |2−2|+c·|1−1| = 0
and dcτ (τ2.(τ1.0+τ1.0), τ2.(τ1.0+a.0)) = |2−2|+c·|2−1| = c.

4The sum is for all pairs (R∼, S∼) such that R[σP ′
P ′′ ]S.
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We can use various values of c ∈ [0, 1] to give a certain
weight to each transition step. Thus d1

a gives equal impor-
tance to the differences at each transition step, while d0

a is
the measure that only looks to the immediate transitions.
Notice also that for a ∈ A the values of dca are of type
k0 + k1 · c + k2 · c2 + ... where ki are multiples of ι(a).
This is not particularly significant, however, as our main issue
is not the absolute value of the metric, but properties like
the significance of zero distance or the relative distance of
processes.

Consider now the processes τ3.0, τ2.τ1.0, τ1.τ2.0 and
τ1.τ1.τ1.0 represented bellow. Their relative distances are:
dc(τ3.0, τ2.τ1.0) = |3− 2|+ c · |1− 0| = 1 + c,
dc(τ3.0, τ1.τ2.0) = |3− 1|+ c · |2− 0| = 2 + 2c,
dc(τ1.τ2.0, τ2.τ1.0) = |1− 2|+ c · |2− 1| = 1 + c,
dc(τ3.0, τ1.τ1.τ1.0) = |3−1|+c·|1−0|+c2 ·|1−0| = 2+c+c2,
dc(τ2.τ1.0, τ1.τ1.τ1.0) = |2−1|+c·|1−1|+c2 ·|1−0| = 1+c2,
dc(τ1.τ2.0, τ1.τ1.τ1.0) = |1−1|+c·|2−1|+c2 ·|1−0| = c+c2,
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The next lemma states that, indeed, our functions are
pseudometrics.

Lemma 7.1: For any c ∈ [0, 1] and any α ∈ A+, dcα is a
pseudometric on P.

The next theorem states that the distance between bisimilar
processes is always zero. It also says that if for a fixed c 6= 0
the distances dcα between two given processes are zero for all
α ∈ A+, then the processes are bisimilar.

Theorem 7.1: Let P,Q ∈ P.
(i) If P ∼ Q, then for any c ∈ [0, 1] and any α ∈ A+,
dcα(P,Q) = 0.
(ii) If there exists c ∈ (0, 1], such that for any α ∈ A+,
dcα(P,Q) = 0, then for any c′ ∈ [0, 1] and any α ∈ A+

dc
′

α (P,Q) = 0 and, moreover, P ∼ Q.

Notice that the elements of Dα measure only α-transitions
and for this reason their utility is limited. Our main intention
is to introduce a metric on processes that can characterize the
bisimulation. For achieving this goal, in what follows we will



introduce a family of metrics which consider all the transitions.
The intuition is that the “general” distance dc between two
processes is the supremum of the distances dcα for all α ∈ A+.

Definition 7.2: Consider the family D of functions
dc : P×P→ R+ with c ∈ [0, 1], defined for arbitrary P ′, P ′′ ∈
P by

dc(P ′, P ′′) =sup
α∈A+ dcα(P ′, P ′′).

Consider the processes P = a.a.0 + τr.τr.0 and Q =
a.(a.0 +a.0) + (τr.0|τr.0) represented bellow. For calculating
dc(P,Q), we first observe that dca(P,Q) = |ι(a)− ι(a)|+ c ·
|2ι(a)− ι(a)| = c · ι(a), dcτ (P,Q) = |2r− r|+ c · |r− r| = r
and for any α 6∈ {a, τ}, dcα(P,Q) = 0.
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Consequently, dc(P,Q) = max{c · ι(a), r}.
Lemma 7.2: For any c ∈ [0, 1], dc is a pseudometric on P.
The next theorem states that, indeed, the pseudometrics dc

generalise the bisimulation of processes: lifted on the level of
bisimulation classes are metrics and consequently organize the
space P∼ as a metric space.

Theorem 7.2: Let P,Q ∈ P.
(i) If P ∼ Q, then for any c ∈ [0, 1], dc(P,Q) = 0.
(ii) If for some c ∈ (0, 1], dc(P,Q) = 0, then for any c′ ∈ [0, 1]
dc
′
(P,Q) = 0 and P ∼ Q.
For concluding this section, we notice that the metrics are

influenced by the algebraic structure of the processes. The
next lemma reveals such a relation for the case of prefixing.
However, we believe that more complex relations can be
identified and we intend to return to this problem in future
works. The possibility of computing the distance between two
processes from the relative distances of their sub-processes is
an idea that can find interesting applications especially in the
case of large systems where it is more convenient to focus on
subsystems.

Lemma 7.3: For arbitrary P,Q ∈ P and ε ∈ A∗, if
dc(P,Q) = r, then dc(ε.P, ε.Q) = max{2 · ι(ε), c · r}.

VIII. RELATED WORK

There has been considerable of work on probabilistic and
stochastic process algebras. Probabilistic process algebras
solve the non-determinism by labeling the transitions with
probabilities [33], [25], [3]. In extension, stochastic process al-
gebras such as TIPP [16], PEPA [18], [19], EMPA [4], stochas-
tic π-calculus [29] and interactive Markov chain algebra [21],
[7] prefix the transitions with probabilistic distributions. In
all these cases the transitions are defined pointwise, meaning
that the semantics can be described in terms of continuous-
time Markov chains and the probabilistic distributions are on
the discrete space of processes. For correctly describing the
stochastic behaviours with SOS rules of type P label−→ Q, these

calculi involve complex mathematical machineries for labeling
and counting. By contrast, our stochastic process algebra is
based on the measurable space of processes generated by the
structural congruence classes. Our rules are of type P −→ µ
where µ is a class of distributions on the measurable space of
processes. This allows us to proposes an elegant SOS, similar
to those of non-deterministic PAs, that maps process-results
into distribution-results.

The idea of defining probabilistic transitions by functions
that associate to each state of a system a probability distribu-
tion over the state space has been considered previously and
advocated in the context of probabilistic automata [24], [31].
More recently, the transition-systems-as-coalgebras paradigm
[10], [30] exploits the same idea, providing a general and
uniform mathematical characterisation of transition systems.

The underlying Markovian structures used by our process
algebra are more general than continuous-time Markov chains
[21] due to the structure imposed by the equational theory.
We need a notion of a Markov process defined for a general
measurable space and continuous time. For this reason, we
use a version of Markovian process similar to the one defined
in [14]. Markov processes for arbitrary analytic spaces have
been studied by Panangaden et al. in a series of papers [5], [8],
[13], [12], [28] where also a notion of stochastic bisimulation,
that extends the probabilistic bisimulation of [25], is defined
and studied. A similar probabilistic model – Harsanyi type
space – has been studied in the context of beliefs systems
[17], [20], [27]. Our definition of MP combines these two
concepts, relying on results from [15], [28]. On the lines of
[28], [12] we define the bisimulation of MPs.

The theory of GSOS [32] has been extended for the case of
stochastic systems in [22], [9] where general congruence for-
mats for stochastic GSOS (SGSOS) are studied. The SGSOS
framework, as well as GSOS, focuses on the monads freely
generated by the algebraic signature of a process calculus.
Our case is different: we have an equational monad because
the structural congruence provides extra structure for the class
of processes and thus we get a different type of SOS. In
our format, for instance, the algebraic signature of processes
is different from the algebraic signature of behaviors. Using
a σ-algebra which is not the powerset makes our approach
different, while considering the measurable sets closed to some
congruence relation makes it more appropriate for modeling
and for extensions to other equational theories.

Metrics for measuring the similarity of probabilistic systems
in terms of behaviours have been proposed in [11], [28]
following an idea expounded in [23]. These metrics are similar
to Kantorovich metric on distributions with the differences
that instead of Lipschitz functions, a set of functional ex-
pressions that generalise the formulas of Hennessy-Milner
logic are used. These metrics are very general being designed
for continuous-space Markovian processes. Our metrics are
similar to Desharnais-Panangaden metrics, for instance in the
way they explore the transition systems, but they are simpler
being particularly designed for our process algebra. We do
not consider any functional expressions for calculating the



distance, but we propose a direct approach. An other important
difference is that our metrics measure the differences between
processes in terms of rates and not in terms of probabilities.

IX. CONCLUDING REMARKS

In this paper we develop a stochastic extension of CCS. We
propose a structural operational semantics based on measure
theory and particularly suited to a domain where a measure
of similarity of behaviours is important. For organizing the
set of processes as a measurable space, we have chosen the
σ-algebra generated by the structural congruence classes of
processes and we base the theory on top of it. This choice
is motivated by practical modelling reasons: the calculus is
meant to be used for applications in computational systems
biology. In this context, the structural congruence and the
distributions over the space of congruence classes play a key
role. The congruence classes represent chemical “soups” and
the various syntactic representations of the same soup need to
be identified. In fact, structural congruence was inspired by a
chemical analogy [2].

The stochastic behaviour is defined using a general concept
of Markov process that encapsulates most of the Markovian
models, including continuous ones, as well as other models of
probabilistic systems, e.g., Harsanyi type spaces. This concept
is based on unspecified analytic (hence, measurable) spaces
and generalizes rate transition systems [22], [9]. Consequently,
we obtain a general definition of stochastic bisimulation sim-
ilar to the one used in [14].

We also define quantitative extensions of stochastic bisim-
ulation in the form of two classes of metrics that measure
the distance between processes in terms of similar behaviours:
two processes are at distance zero iff they are bisimilar; two
processes are close if their behaviours are similar.

The novelty of this work consists in the fact that the
measurable space of processes is axiomatized by structural
congruence and the operational semantics reflects the interre-
lation between this space and the space of distributions on it.
Our technology is appropriate for practical modelling purposes
where various congruences can be relevant. It will help design
(more complex) stochastic process algebras in a uniform way,
possibly involving different equational axiomatizations, while
avoiding the heavy techniques for counting of reductions.
The organisation of the space of processes as a metric space
is also a novelty. It can be extended to other calculi and
used in applications, for example, to appreciate the quality of
approximations of models or to characterise quantitatively the
concept of robustness. For future work we intend to extend
this calculus to include other algebraical operations, such
as recursion or the new name quantification, and to define
a general SOS format for these calculi. Another research
direction that we intend to follow is the logical characterisation
of bisimulation and of the metrics.
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APPENDIX

In this appendix we have collected some of the proofs of
the main results presented in the paper.

Proof of Theorem 4.1: It is sufficient to show that for
each P ∈ P and each α ∈ A+, θ(α)(P ) : Π → R+ is a
measure on the measurable space (P,Π). The proof follows
the inductive steps of the construction in Definition 4.3. We
only treat the non trivial cases.
Case 3: If P = Q+R, then θ(α)(Q+R) is a measure.

First notice that for any α ∈ A, θ(α)(Q + R)(∅) =
θ(α)(Q)(∅) + θ(α)(R)(∅) = 0.

Consider now an arbitrary sequence of pairwise
disjoint sets (Ri)i∈I ∈ Π. Then, for arbitrary
α ∈ A, θ(α)(Q + R)(∪i∈IRi) = θ(α)(Q)(∪i∈IRi) +
θ(α)(R)(∪i∈IRi). The inductive hypothesis guarantees
that θ(α)(Q)(∪i∈IRi) =

∑
i∈I θ(α)(Q)(Ri) and

θ(α)(R)(∪i∈IRi) =
∑
i∈I θ(α)(R)(Ri). Consequently,

θ(α)(Q + R)(∪i∈IRi) =
∑
i∈I θ(α)(Q)(Ri) +∑

i∈I θ(α)(R)(Ri) =
∑
i∈I(θ(α)(Q)(Ri)+θ(α)(R)(Ri)) =∑

i∈I θ(α)(Q+R)(Ri).
Case 4: P ≡ Q|R.

Let a ∈ A. θ(a)(Q|R)(∅) = θ(a)(R)(∅Q)+θ(a)(Q)(∅R) =
0, because ∅Q = ∅R = ∅ and, from the inductive hypothesis,
θ(a)(R) and θ(a)(Q) are measures. Moreover,

θ(τ)(Q|R)(∅) = θ(τ)(R)(∅Q) + θ(τ)(Q)(∅R)+

a∈A∑
P1|P2⊆∅

θ(a)(Q)(P1) · θ(a)(R)(P2)
2 · ι(a)

.

But ∅Q = ∅R = ∅ and P1|P2 ⊆ ∅ implies P1 = P2 =
∅. The inductive hypothesis guarantees that θ(τ)(R)(∅) =
θ(τ)(Q)(∅) = θ(a)(R)(∅) = θ(a)(Q)(∅) = 0. Hence,
θ(Q|R)(τ)(∅) = 0.

Consider now an arbitrary sequence of pairwise disjoint sets
(Ri)i∈I ∈ Π and let P = ∪i∈IRi. Then,

θ(a)(Q|R)(P) = θ(a)(R)(PQ) + θ(a)(Q)(PR).

Observe that RiQ and RiR are pairwise disjoint, because the
setsRi are pairwise disjoint. Consequently, using the inductive
hypothesis, we obtain

θ(a)(Q|R)(P) =
∑
i∈I

θ(a)(R)(RiQ) +
∑
i∈I

θ(a)(Q)(RiR) =

∑
i∈I

[θ(a)(R)(RiQ) + θ(a)(Q)(RiR)] =
∑
i∈I

θ(a)(Q|R)(Ri).

θ(τ)(Q|R)(P) = θ(τ)(R)(PQ) + θ(τ)(Q)(PR)+

+
a∈A∑

P1|P2⊆P

θ(a)(Q)(P1) · θ(a)(R)(P2)
2 · ι(a)

.

As before,

θ(τ)(Q|R)(P) =
∑
i∈I

θ(τ)(R)(RiQ) +
∑
i∈I

θ(τ)(Q)(RiR)+

∑
i∈I

a∈A∑
P1|P2∈Ri

θ(a)(Q)(P1) · θ(a)(R)(P2)
2 · ι(a)

=

=
∑
i∈I

θ(τ)(Q|R)(Ri).

Proof of Lemma 5.1: We only prove 2(b) and 2(c), the
other cases being trivial.

2(b). Let µ = µ′ P⊗Q µ′′ and arbitrary a ∈ A, R ∈ Π.

((µ′ P⊗Q µ′′) P |Q⊗R µ′′′)(a)(R) = (µ P |Q⊗R µ′′′)(a)(R) =

µ(a)(RR) + µ′′′(a)(RP |Q)

But µ(a)(R) = µ′(a)(R) P⊗Q µ′′(a)(R) = µ′(a)(RQ) +
µ′′(a)(RP ).

((µ′ P⊗Q µ′′) P |Q⊗R µ′′′)(a)(R) =

= (µ′(a)((RR)Q) + µ′′(a)((RR)P )) + µ′′′(a)(RP |Q).

Observe that for arbitrary P,Q ∈ P and arbitrary R ∈ Π,
(RP )Q = RP |Q. Using this, we obtain

((µ′ P⊗Q µ′′) P |Q⊗R µ′′′)(a)(R) =

= µ′(a)(RQ|R) + µ′′(a)(RP |R) + µ′′′(a)(RP |Q).

In the same way we can prove that

µ′ P⊗Q|R (µ′′ Q⊗R µ′′′)(a)(R) =

= µ′(a)(RQ|R) + µ′′(a)(RP |R) + µ′′′(a)(RP |Q).

Now we prove that

((µ′ P⊗Qµ′′) P |Q⊗Rµ′′′)(τ)(R) = (µ′ P⊗Q|R(µ′′ Q⊗Rµ′′′))(τ)(R).

As before, we have

((µ′ P⊗Q µ′′) P |Q⊗R µ′′′)(τ)(R) = (µ P |Q⊗R µ′′′)(τ)(R) =

= µ(τ)(RR)+µ′′′(τ)(RP |R)+
a∈A∑

P1|P2⊆R

µ(a)(P1) · µ′′′(a)(P2)
2 · ι(a)

=

= µ′(τ)(RR|Q) + µ′′(τ)(RR|P ) + µ′′′(τ)(RP |R)+

b∈A∑
Q1|Q2⊆RR

µ′(b)(Q1) · µ′′(b)(Q2)
2 · ι(b)

+
a∈A∑

P1|P2⊆R

µ(a)(P1) · µ′′′(a)(P2)
2 · ι(a)

.

But
a∈A∑

P1|P2⊆R

µ(a)(P1) · µ′′′(a)(P2)
ι(a) · 2

=

a∈A∑
P1|P2⊆R

[µ′(a)((P1)Q) + µ′′(a)((P1)P )] · µ′′′(a)(P2)
ι(a) · 2

=

a∈A∑
P1|P2⊆R

µ′(a)((P1)Q) · µ′′′(a)(P2)
ι(a) · 2

+



a∈A∑
P1|P2⊆R

µ′′(a)((P1)P ) · µ′′′(a)(P2)
ι(a) · 2

.

Observe that, due to the way the sum is defined (and because
pairing is an involution) we have that

a∈A∑
P1|P2⊆R

µ′(a)((P1)Q) · µ′′′(a)(P2)
ι(a) · 2

=

a∈A∑
P1|P2⊆RQ

µ′(a)(P1) · µ′′′(a)(P2)
ι(a) · 2

and
a∈A∑

P1|P2⊆R

µ′′(a)((P1)P ) · µ′′′(a)(P2)
ι(a) · 2

=

a∈A∑
P1|P2⊆RP

µ′′(a)(P1) · µ′′′(a)(P2)
ι(a) · 2

.

Consequently,

((µ′ P⊗Q µ′′) P |Q⊗R µ′′′)(τ(r))(R) =

= µ′(τ)(RR|Q) + µ′′(τ)(RR|P ) + µ′′′(τ)(RP |R)+

a∈A∑
P1|P2⊆RR

µ′(a)(P1) · µ′′(a)(P2)
ι(a) · 2

+

a∈A∑
P1|P2⊆RQ

µ′(a)(P1) · µ′′′(a)(P2)
ι(a) · 2

+

a∈A∑
P1|P2⊆RP

µ′′(a)(P1) · µ′′′(a)(P2)
ι(a) · 2

.

Similarly can be proved that

(µ′ P⊗Q|R (µ′′ Q⊗R µ′′′))(τ)(R) =

= µ′(τ)(RR|Q) + µ′′(τ)(RR|P ) + µ′′′(τ)(RP |R)+

a∈A∑
P1|P2⊆RR

µ′(a)(P1) · µ′′(a)(P2)
ι(a) · 2

+

a∈A∑
P1|P2⊆RQ

µ′(a)(P1) · µ′′′(a)(P2)
ι(a) · 2

+

a∈A∑
P1|P2⊆RP

µ′′(a)(P1) · µ′′′(a)(P2)
ι(a) · 2

.

3(c). We prove now that µ′ P⊗0 ω = µ′. Consider arbitrary
a ∈ A and R ∈ Π.

(µ′ P⊗0 ω)(a)(R) = µ′(a)(R0) + ω(a)(RP ).

But R0 = R and ω(a)(RP ) = 0. Consequently,

(µ′ P⊗0 ω)(a)(R) = µ′(a)(R).

We also have

(µ′ P⊗0 ω)(τ)(R) = µ′(τ)(R0) + ω(τ)(RP )+

a∈A∑
P1|P2⊆R

µ′(a)(P1) · ω(a)(P2)
ι(a) · 2

.

But ω(a)(P1) = ω(τ)(RP ) = 0 and R0 = R, where from
we obtain

(µ′ P⊗0 ω)(τ)(R) = µ′(τ)(R).

Proof of Lemma 5.3: The proof is done by induction
on the structures of P and Q following the axioms of the
structural congruence.

The case P = R′|S, Q = R′′|S with R′ ≡ R′′.
Suppose that S → µ′ and R′ → µ′′ (from the inductive
hypothesis, R′′ → µ′′). Then, µ = µ′′ R′⊗S µ′. Using 3(a)
of Lemma 5.1, we obtain that µ = µ′′ R′′⊗S µ′ and, by (Par),
Q→ µ.

The case P = R′ + S, Q = R′′ + S with R′ ≡ R′′.
Suppose that S → µ′ and R′ → µ′′ (from the inductive
hypothesis, R′′ → µ′′). Then, by (Sum), Q → µ′′ ⊕ µ′. But
µ = µ′′ ⊕ µ′.

The case P = α.R, Q = α.S with R ≡ S.
We have µ = αR and S → αS . As R ≡ S, we obtain that
µ = αS , i.e., Q→ µ.

The case P = R|S, Q = S|R.
Suppose that R→ µ′ and S → µ′′. Then Q→ µ′′ S⊗Rµ′ and
µ = µ′ R⊗Sµ′′. But we proved in Lemma 5.1 that µ′′ S⊗Rµ′ =
µ′ R⊗S µ′′.

The case P = (R|S)|T , Q = R|(S|T ).
Suppose that R → µ′, S → µ′′ and T → µ′′′. Then Q →
µ′ R⊗S|T (µ′′ S⊗T µ′′′) and µ = (µ′ R⊗S µ′′) R|S⊗T µ′′′.
But we proved in Lemma 5.1 that µ′ R⊗S|T (µ′′ S⊗T µ′′′) =
(µ′ R⊗S µ′′) R|S⊗T µ′′′.

The case Q = P |0.
Q→ µ P⊗0 ω. But, from Lemma 5.1, µ P⊗0 ω = µ.

The cases [P = R+S and Q = S+R], [P = (R+S)+T
and Q = R+ (S + T )] and [Q = P + 0].
These are consequences of the fact that (∆(P)A+

,⊕, ω) is a
commutative monoid (Lemma 5.1).

Proof of Theorem 6.1: Before proceeding with the proof
let’s notice that if we have two equivalence relations R1,R2

on a set M , there exists an equivalence relation R on M such
that R1 ∪ R2 ⊆ R. Moreover, each R-equivalence class can
be seen as the reunion of R1-equivalence classes as well as
the reunion of R2-equivalence classes. The same result is true
if we start from a denumerable set of equivalence relations.

We prove now that ∼ is an equivalence relation. Reflexivity
and symmetry are trivial. We prove the transitivity.

Suppose that P ∼ Q and Q ∼ R, P → µ, Q → µ′

and R → µ′′. Then, there exist two stochastic bisimulation
relations R1,R2 such that (P,Q) ∈ R1 and (Q,R) ∈ R2. Let
R be the smallest equivalence relation such thatR1∪R2 ⊆ R.



Consider arbitrary α ∈ A+ and C ∈ Π(R). Observe that, by
definition, Π(R) = Π ∩ PR, where we denoted by PR the
set of R-equivalence classes. Hence, C ∈ PR and because
C ∈ Π and Π is denumerable, we obtain that there exist
(Ci1)i∈I ⊆ PR1 and (Cj2)j∈J ⊆ PR2 at most denumerable
sets of R1 and respectively R2-equivalence classes, such that

C =
⋃
i∈I

Ci1 =
⋃
j∈J

Cj2 .

We also assume that the elements of (Ci1)i∈I are pairwise
distinct hence, (because they are equivalence classes) are
pairwise disjoint. The same about (Cj2)j∈J .

Because (P,Q) ∈ R1, we have that for each Ci ∈ Π(R1) =
Π ∩ PR1 and each α ∈ A+, µ(α)(Ci) = µ′(α)(Ci).

Because (Q,R) ∈ R2, we have that for each Cj ∈
Π(R2) = Π ∩ PR2 and each α ∈ A+, µ′(α)(Cj) =
µ′′(α)(Cj).

We show that for each C ∈ Π(R) and each α ∈ A+,
µ(α)(C) = µ′′(α)(C). Because µ(α), µ′(α) and µ′′(α) are
measures, we obtain

µ(α)(C) =
∑
i∈I

µ(α)(Ci) =
∑
i∈I

µ′(α)(Ci) = µ′(α)(C).

Similarly,

µ′(α)(C) =
∑
j∈J

µ′(α)(Cj) =
∑
j∈J

µ′′(α)(Cj) = µ′′(α)(C).

Hence, µ(α)(C) = µ′′(α)(C) proving that R is a stochastic
bisimulation and concluding the transitivity proof.

For showing that P ∼ Q iff for any C ∈ Π(∼) and any
α ∈ A, µ(α)(C) = µ′(α)(C), we proceed as before, observing
that P ∼ Q implies the existence of a bisimulation relation R
such that (P,Q) ∈ R. We can show that each C ∈ Π(∼) can
be represented as a reunion of (at most denumerable) pairwise
disjoint measurable R-equivalence classes and, using the fact
that µ(α), µ′(α) are measures we can show that µ(α)(C) =
µ′(α)(C).

Proof of Theorem 6.2: Suppose that P → µ. P ≡ Q
implies (Lemma 5.3) that Q → µ. As for any ∼-equivalence
class C and any α ∈ A+, µ(α)(C) = µ(α)(C), we obtain
P ∼ Q.

Proof of Theorem 6.3:
For the proof of Theorem 6.3 we need the next lemma.
Lemma 9.1: For arbitrary P,Q,R ∈ P, if P ∼ Q, then

P |R ∼ Q|R.
Proof: We prove this lemma inductively on the structure

of the processes involved. For doing this, we first define the
complexity of a process as the number of algebraic operators
appearing in its syntax.

Let cx : P→ N by
cx(0) = 0, cx(α.P ) = cx(P ) + 1 and cx(P |Q) = cx(P +
Q) = cx(P ) + cx(Q).

Observe that the complexity of a process is strictly related
to the behavior of the process. Indeed, if for some r 6= 0,
P

α,r−→ Q, then cx(P ) > cx(Q).

For (x1, x2), (y1, y2) ∈ N2 we write (x1, x2) < (y1, y2) iff
for each i = 1, 2, xi ≤ yi and for some j = 1, 2, xj < yj .
With this notation, we will prove the lemma inductively on
(max(cx(P ), cx(Q)), cx(R)).

The base case is trivial, so we prove, in what follows, the
inductive step.

Suppose that for any P ′, Q′, R′ ∈ P with

(max(cx(P ′), cx(Q′)), cx(R′)) < (max(cx(P ), cx(Q)), cx(R))

we have that if P ′ ∼ Q′, then P ′|R′ ∼ Q′|R′. And we show
that if P ∼ Q, then P |R ∼ Q|R.

Suppose that P → µ, Q → η and R → ρ. Then, P |R →
µ P⊗R ρ and Q|R → η Q⊗R ρ. For showing P |R ∼ Q|R, it
is sufficient to show that for arbitrary α ∈ A+ and C ∈ P∼,

(µ P⊗R ρ)(α)(C) = (η Q⊗R ρ)(α)(C).

The case α = a ∈ A.
Due to Lemma 5.4 we can assume that:
• there exists a finite set of processes P =
{P 1

1 , ..., P
n1
1 , ..., P 1

k , ..., P
nk

k }, pairwise non structural

congruent, such that P
a,0−→ P \ P and P

a,pj
i−→ P ji for

some pji 6= 0; in addition, for each i = 1..k and each
j, j′ ∈ {1, ..ni}, P ji ∼ P j

′

i and for i 6= i′, x = 1..ni,
x′ = 1..ni′ , P xi 6∼ P x

′

i′ ; let pi =
∑
j=1..ni

pji ;
• there exists a finite set of processes Q =
{Q1

1, ..., Q
m1
1 , ..., Q1

l , ..., Q
ml

l }, pairwise non structural

congruent, such that Q
a,0−→ P \ Q and Q

a,qj
i−→ Qji for

some qji 6= 0; in addition, for each i = 1..l and each
j, j′ ∈ {1, ..mi}, Qji ∼ Qj

′

i and for i 6= i′, x = 1..mi,
x′ = 1..mi′ , Qxi 6∼ Qx

′

i′ ; let qi =
∑
j=1..mi

qji ;
• there exists a finite set of processes R =
{R1

1, ..., R
u1
1 , ..., R1

v, ..., R
uv
v }, pairwise non structural

congruent, such that R
a,0−→ P \ R and R

a,rj
i−→ Rji for

some rji 6= 0; in addition, for each i = 1..v and each
j, j′ ∈ {1, ..ui}, Rji ∼ Rj

′

i and for i 6= i′, x = 1..ui,
x′ = 1..ui′ , Rxi 6∼ rx

′

i′ ; let ri =
∑
j=1..ui

rji ;
Observe that P ∼ Q implies k = l, we can suppose that

P ji ∼ Q
j′

i and for each i = 1..k, pi = qi.
For arbitrary C ∈ P∼,

(µ P⊗R ρ)(a)(C) = µ(a)(CR) + ρ(a)(CP ) =∑
(P1|R)≡⊆C

µ(a)(P≡1 ) +
∑

(R1|P )≡⊆C

ρ(a)(R≡1 ),

and

(η Q⊗R ρ)(a)(C) = η(a)(CR) + ρ(a)(CQ) =∑
(Q1|R)≡⊆C

η(a)(Q≡1 ) +
∑

(R1|Q)≡⊆C

ρ(a)(R≡1 ).

If there exist i1, ..it such that for each i ∈ {i1, ..it} and
only for them there exist j ∈ {1..ni} with P ji |R ∈ C, then,
from the inductive hypothesis we have that for each j′ =
1..ni, P

j′

i |R ∈ C. Moreover, if P ′|R ∈ C such that P |R a,s−→



P ′|R for s 6= 0, then there exist i, j such that P ′ ≡ P ji .
Consequently, ∑

(P1|R)≡⊆C

µ(a)(P≡1 ) =
∑
s=1..t

ps.

But P ji ∼ Qj
′

i where from, using the inductive hypothesis,
Qj
′

i |R ∈ C. Further, a similar argument as before gives∑
(Q1|R)≡⊆C

η(a)(Q≡1 ) =
∑
s=1..t

ps.

On the other hand, if there exist no i and j such that P ji |R ∈
C, from P ∼ Q we can prove that there is no i, j such that
Qji |R ∈ C, where from we obtain∑

(Q1|R)≡⊆C

η(a)(Q≡1 ) =
∑

(P1|R)≡⊆C

µ(a)(P≡1 ) = 0.

Observe now that P ∼ Q implies, using the inductive
hypothesis, that P |Rji ∼ Q|R

j
i , i.e., Rji |P ∈ C iff Q|Rji ∈ C.

Moreover, if P |Rji ∈ C, P |Rj
′

i ∈ C for any j′ = 1, ..ui and
for any i′ 6= i, P |Rj

′′

i′ 6∈ C. Hence, supposing that Rji |P ∈ C,
we obtain∑

(R′|P )≡⊆C

ρ(a)(R′) =
∑

(R′|Q)≡⊆C

ρ(a)(R′) = ri.

Else, if for no i, j, Rji |P ∈ C we also have that for no i, j
Rji |Q ∈ C implying∑

(R′|P )≡⊆C

ρ(a)(R′) =
∑

(R′|Q)≡⊆C

ρ(a)(R′) = 0.

The case α = τ .
Due to Lemma 5.4 we can assume that:
• there exists a finite set of processes P = {P 1

0 , ..., P
n0
0 },

pairwise non structural congruent, such that P
τ,pj

0−→ P j0
for some pj0 6= 0 and P

τ,0−→ P \ P; in addition, there
exists a finite set of actions a ∈ A with P

a,s−→ P
for some s 6= 0 and for each such a there exists a
set {P 1

1 , ..., P
n1
1 , ..., P 1

k , ..., P
nk

k } of processes, pairwise

non structural congruent, such that P
a,pj

i−→ P ji for some
pji 6= 0; moreover, for each i = 0..k and j, j′ ∈ {1, ..ni},
P ji ∼ P j

′

i and for i 6= i′, x = 1..ni, x′ = 1..ni′ ,
P xi 6∼ P x

′

i′ ; let pi =
∑
j=1..ni

pji for each i = 0, ..k;
• there exists a finite set of processes Q = {Q1

0, ..., Q
m0
0 },

pairwise non structural congruent, such that Q
τ,qj

0−→ Qj0
for some qj0 6= 0 and Q

τ,0−→ P \ Q; in addition, there
exists a finite set of actions a ∈ A with Q

a,s−→ P
for some s 6= 0 and for each such a there exists a
set {Q1

1, ..., Q
m1
1 , ..., P 1

l , ..., P
ml

l } of processes, pairwise

non structural congruent, such that Q
a,qj

i−→ Qji for some
qji 6= 0; moreover, for each i = 0..l and j, j′ ∈ {1, ..mi},
Qji ∼ Qj

′

i and for i 6= i′, x = 1..mi, x′ = 1..mi′ ,
Qxi 6∼ Qx

′

i′ ; let qi =
∑
j=1..ni

qji for each i = 0, ..l;

• there exists a finite set of processes R = {R1
0, ..., R

u0
0 },

pairwise non structural congruent, such that R
τ,rj

0−→ Rj0
for some rj0 6= 0 and R

τ,0−→ P \ R; in addition, there
exists a finite set of actions a ∈ A with R

a,s−→ P
for some s 6= 0 and for each such a there exists a
set {R1

1, ..., R
n1
1 , ..., R1

k, ..., R
nk

k } of processes, pairwise

non structural congruent, such that R
a,rj

i−→ Rji for some
rji 6= 0; moreover, for each i = 0..v and j, j′ ∈ {1, ..ui},
Rji ∼ Rj

′

i and for i 6= i′, x = 1..ui, x′ = 1..ui′ ,
Rxi 6∼ Rx

′

i′ ; let ri =
∑
j=1..ni

pji for each i = 0, ..v;
Observe that P ∼ Q implies, for each a having the

mentioned properties, that k = l; we can suppose, without
loosing generality, that P ji ∼ Qj

′

i and for each i = 0..k,
pi = qi.

For arbitrary C ∈ P∼,

(µ P⊗R ρ)(τ)(C) = µ(τ)(CR) + ρ(τ)(CP )+
a∈A∑

(P1|P2)≡⊆C

µ(a)(P≡1 ) · ρ(a)(P≡2 )
ι(a) · 2

=

∑
(P1|R)≡⊆C

µ(τ)(P≡1 ) +
∑

(R1|P )≡⊆C

ρ(τ)(R≡1 )+

a∈A∑
(P1|P2)≡⊆C

µ(a)(P≡1 ) · ρ(a)(P≡2 )
ι(a) · 2

,

and

(η Q⊗R ρ)(a)(C) = η(τ)(CR) + ρ(τ)(CQ)+
a∈A∑

(Q1|Q2)≡⊆C

η(a)(Q≡1 ) · ρ(a)(Q≡2 )
ι(a) · 2

=

∑
(Q1|R)≡⊆C

η(τ)(Q≡1 ) +
∑

(R1|Q)≡⊆C

ρ(τ)(R≡1 )+

a∈A∑
(Q1|Q2)≡⊆C

η(a)(Q≡1 ) · ρ(a)(Q≡2 )
ι(a) · 2

.

At this level we can demonstrate, using the same strategy
as in the case α = a, that
• ∑

(P1|R)≡⊆C

µ(τ)(P≡1 ) =
∑

(Q1|R)≡⊆C

η(τ)(Q1 ≡) =
∑
i=1..t

pi,

where i1, ..it are such that for each i ∈ {i1, ..it}, there
exists some j such that (hence, for all j) P ji |R ∈ C and,
from the inductive hypothesis, there exists j′ such that
(hence, for all j′) Qj

′

i |R ∈ C;
• because P |Rji ∼ Q|R

j
i ,∑

(R1|P )≡⊆C

ρ(τ)(R≡1 ) =
∑

(R1|Q)≡⊆C

ρ(τ)(R≡1 ) = ri,

where i is (the unique index) such that for some (hence,
for all) j, j′, P |Rji , Q|R

j′

i ∈ C.



• for each a as before we also have∑
(P1|P2)≡⊆C

η(a)(P≡1 ) · ρ(a)(P≡2 )
ι(a) · 2

=
∑

(i,j)∈I

pi · qj =

=
∑

(P1|P2)≡⊆C

η(a)(P≡1 ) · ρ(a)(P≡2 )
ι(a) · 2

,

where I is the set of pairs of indexes (i, j) such that for
some x, y (hence, for all), P xi |Q

y
j ∈ C.

We can proceed now with the proof of Theorem 6.3.
1. If P ∼ P ′, we have that for any C ∈ P∼, P ∈ C iff

P ′ ∈ C. From here, we derive that [εP ](α)(C) = [εP ′ ](α)(C).
2. If P ∼ P ′ and Q ∼ Q′, then P +Q ∼ P ′ +Q′.

Suppose that P → µ, P ′ → µ′, Q→ η and Q′ → η′. Consider
an arbitrary C ∈ P∼.

For α ∈ A+, (µ ⊕ η)(α)(C) = µ(α)(C) + η(α)(C). But
P ∼ P ′ and Q ∼ Q′, i.e. for any C ∈ P∼, µ(α)(C) =
µ′(α)(C) and η(α)(C) = η′(α)(C). Hence, µ(α)(C) +
η(α)(C) = µ′(α)(C) + η′(α)(C) = (µ′ ⊕ η′)(α)(C).

3. If P ∼ P ′ and Q ∼ Q′, then P |Q ∼ P ′|Q′.
Using Lemma 9.1, we obtain that P ∼ P ′ implies P |P ′ ∼
Q|P ′ and Q ∼ Q′ implies Q|P ′ ∼ Q′|P ′. Further, the
transitivity of ∼ proves P |Q ∼ P ′|Q′.

Proof of Lemma 7.1: The only non-trivial axiom of pseu-
dometrics that we need to prove is: dcα(P,R) ≤ dcα(P,Q) +
dcα(Q,R). We prove it by induction on the structures of
processes. We can assume, without loosing generality, that
there exist the processes P1, ..., Pn, Q1, ..., Qn and R1, ..., Rn
such that D(P ) ⊆ {P1, ..., Pn}, D(Q) ⊆ {Q1, ..., Qn} and
D(R) ⊆ {R1, ..., Rn} and σ′, σ′ ∈ B such that dcα(P,Q) =
σ′α(P,Q), dcα(Q,R) = σ′′α(Q,R) and for each i = 1..n,
Q∼i = σ′(P∼i ), R∼i = σ′′(Q∼i ). Suppose also that P → µ,
Q→ µ′ and R→ µ′′. Then, σ′′′ = σ′′◦σ′ ∈ B. Consequently,
dcα(P,R) ≤ σ′′′α (P,R) =∑

i=1..n

(|µ(α)(P∼i )− µ′′(α)(R∼i )|+ c · dcα(Pi, Ri)).

From the inductive hypothesis we obtain that for each
i = 1..n, dcα(Pi, Ri) ≤ dcα(Pi, Qi) + dcα(Qi, Ri). More-
over, |µ(α)(Pi) − µ′′(α)(Ri)| ≤ |µ(α)(Pi) − µ′(α)(Qi)| +
|µ′(α)(Qi)− µ′′(α)(Ri)|. These imply that∑

i=1..n

(|µ(α)(P∼i )− µ′′(α)(R∼i )|+ c · dcα(Pi, Ri)) ≤

∑
i=1..n

(|µ(α)(P∼i )− µ′(α)(Q∼i )|+ c · dcα(Pi, Qi))+

∑
i=1..n

(|µ′(α)(Q∼i )− µ′′(α)(R∼i )|+ c · dcα(Qi, Ri)) =

σ′α(P,Q) + σ′′α(Q,R) = dcα(P,Q) + dcα(Q,R).

Hence, dcα(P,R) ≤ dcα(P,Q) + dcα(Q,R).

Proof of Lemma 7.2: As for dcα the only non-trivial axiom
to verify is dc(P,R) ≤ dc(P,Q) + dc(Q,R). In Lemma 7.1
we have proved that dcα(P,R) ≤ dcα(P,Q) + dcα(Q,R). From
here we obtain

dc(P,R) =sup
α∈A+ dcα(P,R) ≤supα∈A+ (dcα(P,Q) + dcα(Q,R)) ≤

sup
α∈A+d

c
α(P,Q) +sup

α∈A+ d
c
α(Q,R) = dc(P,Q) + dc(Q,R).


